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A B S T R A C T

This paper presents the prototype of an advanced platform for production analysis and optimization,

referred to as ProOpter. The platform was developed to support the recently derived concept of holistic

production control (HPC), which relies on model-based control. The prototype is comprised of a set of off-

line and on-line modules. The off-line modules support the definition of key performance indicators

(KPIs), the selection of the most influential input (manipulative) variables, and the identification of a

simple production model from historical data. The on-line modules enable KPI prediction and suggest

actions to the production manager, employing model-based production control and/or optimization

techniques. In this way, a new decision-support reasoning based on historical production data can be

introduced. ProOpter has a modular design and can be used as an add-on to existing production IT

systems since it relies on established industrial communication standards. The use of the platform is

validated on the well-known Tennessee Eastman benchmark simulation process and on two industrial

case studies.
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Contents lists available at ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d
1. Introduction

Production, as the main activity inside an industrial plant, is a
very complex activity. The main reasons for this complexity are
complicated and unstable economic conditions, market globaliza-
tion and the increasing demands of customers for customized and
qualitatively high level products. As such, the production process
needs to adapt to this situation with shorter innovation cycles, the
production of individualized/personalized products, the effective
utilization of resources, etc. In order to answer all these challenges
and to gain a key competitive advantage, production companies
must constantly strive for improvements.

Increasing productivity has been an issue for many years. Lean-
management, parameter optimization and other paradigms were
frequently used to boost productivity in the past. In this context
organizational advancements in Japanese manufacturing have a
long tradition dating back to the 1980s, with Just-in-Time
manufacturing and lean production [14]. Nowadays, when high
production flexibility and low-volume production are the main
focus of companies, the classic approaches do not fully address all
the production problems. For these reasons the data-oriented
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approach is increasing in its significance, with particular attention
being given to the successful integration of new IT technologies
into production processes.

A number of initiatives have emerged recently, with the goal
being to establish a framework for the continuous improvement of
production efficiency using the latest technological advancements.
In Europe, the best-known example is probably Germany’s
Industry 4.0 initiative [15]. It proposes employing the Internet
of Things paradigm on the factory floor and derive intelligent,
intercommunicating, autonomously operating production units,
i.e., the so-called cyber-physical systems. This should result in a
flexible and efficient Smart Factory, with a consideration of
ergonomics and customer needs, and the integration of supply-
chain partners along the value chain [2].

A similar initiative in North America is known as the Smart
Manufacturing Leadership Coalition [24]: a coalition of companies,
manufacturing consortia and consultants working on Smart
Manufacturing. This has been defined as the dramatically
intensified application of ‘manufacturing intelligence’ throughout
the manufacturing and supply-chain enterprise [4].

These initiatives tend to improve the organization of the
production process and establish a decision-support framework
with an improved insight into the current state of production
and its performance. In this context the obvious step in
production support is to employ sophisticated data analysis and
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Fig. 1. The concept of production optimization.

Fig. 2. ProOpter architecture.
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system-modelling methods that would make it possible to predict
the effect of production-control measures on future performance.
In this way a decision-making process at the production-control
level could be substantially improved by the possibility to pre-
evaluate the various decisions. Such an approach would also
provide a solution to one of the main problems of today’s industrial
IT systems, i.e., they are collecting a vast amount of unstructured
production data that are seldom used for production analysis and
decision support.

In recent years some progress has been made in these fields of
research. In order to connect shop-floor systems and the enterprise
resource planning (ERP) layer and make today’s factories smarter,
manufacturing intelligence (MI) systems are being developed.
The key functions of MI are data aggregations, contextualization,
analysis, visualization and propagation [13]. In addition, data
mining has emerged as an important tool for knowledge
acquisition from manufacturing databases [3,18].

MI support systems are currently still in the phase of gaining
recognition in everyday practice. In the near future, the rapid
evolution of MI solutions is expected [1,25], where new
functionalities and the increased diversity of software providers
can be expected. Currently, the largest support for MI solutions is
being offered by major business-software companies, which aim to
extend their Business Intelligence (BI) solutions to include the
production level (e.g., SAP, Oracle).

In contrast to this trend we are following the idea of taking the
control solutions used at the lowest level of the control pyramid,
i.e., at the process-control level, and employing them at the
production-control level. With this in mind we have introduced
and further elaborated the concept of holistic production control
(HPC) (see [9,10,28]), which relies on the well-known, model-
based, process-control paradigm. However, the developed ideas
and methods are of little value if they are not supported by an
appropriate tool.

The aim of this paper is to introduce the prototype of a tool,
referred to as ProOpter, that enables the analysis of production
dynamics and supports advanced production-control methods
that are based on embedded models. Preliminary results were
published in [22]. The proposed prototype is a relatively simple
and flexible add-on tool that extends the functionality of classical
Manufacturing Execution Systems (MES). It could also serve as a
platform that can be used to test and validate various methods
needed for production control in a real industrial environment,
which could later be included into the solutions of well-established
MI providers.

In the next section we describe the architecture and the
particular modules of the prototype ProOpter. In Section 3, the
functionality of the tool is demonstrated using a selection of results
from case studies, which include a simulation benchmark as well
as historical data from actual industrial production. Finally, the
discussion and conclusion are presented in Section 4.

2. The architecture and modules of ProOpter

The proposed tool is aimed at supporting the concept of holistic
production control (HPC), which was introduced in Zorzut et al.
[28], and further elaborated and extended in Glavan et al. [10] and
Glavan et al. [9]. The concept is schematically shown in Fig. 1. It
suggests using current key performance indicators (KPIs – K), their
desired business plans (K*) and KPI predictions (K̂) when looking
for the optimized production process settings (U), Eq. (1). The
process settings U comprise the production variables that can be
employed to manipulate the production process (e.g., production
parameters, actuator settings, and low-level control references).
Here, an appropriate model (KPI model – M), describing the
behaviour of the process as seen through KPIs is required, and it is
expected to be derived from historical measurements of the
process settings (U), the disturbances (d), and the archived KPIs
that were determined from the measured production data (y). The
KPI predictions (K̂) are determined based on the model M, using
current and past values of U, d and past measured KPI values (Kpast),
as shown with Eq. (2).

U ¼ argmin
U 2 R

CðKðyÞ; K�; K̂Þ (1)

K̂ ¼ MðU; d; K pastÞ (2)

2.1. ProOpter architecture

The concept of production optimization is realized with the
modular structure of ProOpter shown in Fig. 2. Each of the modules
takes care of its own task, while their integration enables the
realization of all the tasks that must be resolved in the design and
application of the HPC concept (Fig. 1). Here, the KPI definition

module is used to determine K, the Influential variable selection and
the Modelling module are used to determine the model M, the KPI

prediction and Optimization module are used to calculate the



Fig. 3. ProOpter software workflow.
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optimized solution, while the supporting modules Communication

and Data preparation are used to integrate all the modules. The
open architecture of the tool enables the subsequent development
of new modules using different programming languages, the
integration of various subsequently developed methods and
algorithms, and distributed operation on various systems.

The modules shown in Fig. 2 are divided into three major
categories:

- Data integration (Data module),
- Support for production modelling (Off-line modules),
- Support for optimization (On-line modules).

The ProOpter workflow is illustrated in Fig. 3, where the darker
outline (Production process and DB) denotes the existing production
IT infrastructure to which ProOpter is connected. From there the
production data are obtained and pre-processed (Data module).
Fig. 4. ProOpter d
Off-line modules support the simplified production-modelling
procedure, where first the KPIs have to be defined (KPI module),
then influential variables need to be selected (IVS module) and
based on these the production models are identified (Modelling

module). On-line modules provide an insight into the production
performance through the KPI observation, as well as supporting
the production manager in determining the optimized production
settings (Optimization). The optimization is based on the KPI
targets and selected, previously identified, models.

2.2. Data module

ProOpter is designed as an add-on to the existing production
management information systems. Connectivity to the external
databases is established with Data module, which takes care also
about production-data pre-processing and the integration of all the
ProOpter modules (Fig. 4).
ata module.
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2.2.1. Data integration

One of the main requirements for such an add-on is to support
established industrial standards in being able to connect and
integrate into the existing information-communication infrastruc-
ture. These typically consist of ERP and MES systems on the higher
levels, which are connected to SCADA systems, PLCs and other
automation equipment on the factory floor.

ProOpter’s integration is achieved by supporting the standard-
ized data-interchange message format, which is typically used for
communications among business-planning and production-con-
trol applications. Equally important is the use of standardized
communication messages among tool modules. This enables the
simple addition or removal of the functional modules as well as
their upgrading, without compromising the functionality of the
rest of the system.

Therefore, the following standards were considered and used in
the development of the software tool:

- the B2MML schema [26], defined by standard IEC 62264 (ISA 95)
[16], is used for messages about production data.

- the OpenMath schema [27] is used for mathematical description
of production KPIs.

- the PMML schema [5] is used to describe empirical production
models.

The use of the described standards for inter-module communi-
cation within ProOpter is illustrated in Fig. 5.

2.2.2. Communication

The use of unified communication protocols within a production
information system is of great importance. The use of communica-
tion standards guarantees the long-term stability of developed
applications as well as an easier integration with the existing
information infrastructure. In compliance with IEC 62264 [16], two
standard methods of data transmission are used within ProOpter:

- Pull model – the data user requests the data from the data
supplier, which sends the data upon request. This is a point-to-
point communication.

- Publish model – the data supplier sends data to the recipients that
are subscribed to specific data. The communication is carried on
according to the publish-subscribe principle.

The use of the MOM (Message Oriented Middleware) infra-
structure is best suited for such an asynchronous XML message
exchange among several clients. It supports both the point-to-
point and publish-subscribe communication principles. MOM
enables distributed communication among loosely coupled clients,
meaning that the communicating applications do not necessarily
Fig. 5. ProOpter standard messages.
all have to be active within the network, nor do they all have to be
aware of each other.

Within ProOpter, the MOM communication was implemented
using the JMS (Java Message Service) specification. Even though
JMS originates from the Java environment, its specification is
general and open to use with clients that are designed within other
development environments and platforms.

2.2.3. Data preparation

Special attention is needed when data from a historical
production database are used. From the vast amount of data, the
informative portions have to be identified. These data segments
should cover the interesting dynamics of the KPIs, for which we
would like to determine the future behaviour. Furthermore, any
outliers or missing data (due to the weakness of the data acquisition,
deadlocks or other unusual process states, output influences, noise,
etc.) need to be properly analyzed. To cover all the operating
conditions of a process, a diverse data distribution is needed.

For all these reasons, advanced data-processing techniques are
necessary. Data-cleaning procedures can be applied to detect and
remove any outliers present in the data. As pointed out in [23],
nonlinear, data-cleaning procedures are recommended. We can
find many filters in the literature proposed for this task: the
Martin–Thomson filter, the FIR-median hybrid (FMH) filter, the
Hampel filter, etc.

The data module checks the production data received from the
external databases for various anomalies (outliers, missing data).
It helps the user to correct these anomalies using a variety of
techniques.

In certain production situations efficiency measures are calcu-
lated based on the data series being measured. This is common
in batch production, where several production variables are
continuously sampled and, therefore, we typically have a range of
corresponding variable values for a batch. On these occasions it is
necessary for such values to be aggregated into a single data point. In
order to achieve this a set of standard data-aggregation functions is
provided within the ProOpter Data module, e.g., average, min, max.
Alternatively, a user can define customized aggregation functions.

2.3. Off-line modules – production modelling

ProOpter’s offline modules are used to analyze historical data
records and to develop a production KPI model using these data.

Modern manufacturing systems are, in many cases and for
various reasons, too complex to be accurately described analyti-
cally from first principles. Instead, we can assume that the
relationship between the inputs and the outputs can be described
by a stochastic, high-dimensional model from a class of generally
nonlinear model structures.

The production model has to include enough details of the
production process to reflect the dynamics for production control.
This model should be relatively simple in comparison to the models
used for the process-control level, yet because of the overall
complexity and the limitations of testing the process, this task is
extremely complex. Production control usually requires the model
to be easily adapted online as well. Therefore, the main objective is
the development of the concept of identifying a relatively simple
input–output model of the production. A short overview of each step
supported by ProOpter is given in the following subsections.

2.3.1. KPI definition module

The KPI module is used to define the performance-measure-
ment metrics that evaluate the production and the company’s
overall success. The production objectives are usually aggregated
with the key production performance indicators [8]. Although
there exists a standard collection of KPIs [17], the specifics of each



Fig. 6. GUI for KPI definition.
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production and individual business objectives need to be consid-
ered manually. Here, the production expert’s knowledge is needed
to properly alternate the standard KPIs and connect their
definitions to the considered production process. The ProOpter’s
supporting tool allows the production manager to define the
structure of a production process’s KPIs and give him/her the
possibility to critically evaluate the illustrative KPI values.

Fig. 6 depicts the GUI of a developed KPI module. In the central
white area there is an equation editor, where the operator
can compose the KPI. All the available measured variables, listed on
the left-hand side of the GUI, can be included in the KPI definition.
Fig. 7. Aggregated KPI composition.
The equation can also be defined with delayed values – in this
way the performance-indicator dynamics can be defined. The
lower right-hand side of the GUI shows the defined structure of the
KPIs, which can be saved and distributed to other modules using
the OpenMath XML schema.

The main advantage of the KPI module is in its integrated support
for the formalization of the currently used expert’s practice to
evaluate the production performance. This can be achieved using
the KPI aggregation function that can aggregate different measure-
ments/KPIs to a newly defined KPI. The aggregation is utilized
using two basic operations. Firstly, the normalization can be
performed for a mutual comparison of different measurements.
Then, the common estimate is achieved with the aggregation of
separate, normalized measurements, as illustrated in Fig. 7.

Measurements can be normalized in different ways, using a
general normalization function given by Eq. (3). Different normal-
ization types are possible and are shown in Fig. 8. The normaliza-
tion functions can be adjusted later using the relevant parameters.
Here, the parameters lb and ub determine the desired range of the
production parameter, while others are used to set (or tune)
the transformation function (see Fig. 8).

Qni ¼ f ðQi; ub; lb; . . .Þ

¼

0 if Qieð�1; TminÞ
T1low

lb � Tmin
�Qi �

T1low

lb � Tmin
�Tmin if Qie½Tmin; lbÞ

1 � T1to p

To pt1 � lb
�Qi þ T1to p �

1 � T1to p

To pt1 � lb
�lb if Qie½lb; To pt1Þ

1 if Qie½To pt1; To pt2�
1 � T2to p

To pt2 � ub
�Qi þ 1 � 1 � T2to p

To pt2 � ub
�To pt2 if QieðTo pt2; ub�

T2low

ub � Tmax
�Qi þ T2low �

T2low

ub � Tmax
�ub if Qieðub; Tmax�

0 if QieðTmax; 1Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(3)



Fig. 8. Predefined normalization types.
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Finally, the m normalized measurements are aggregated into a
KPI, m(Q) using the weighted sum (4), as shown in Fig. 7.

mðQÞ ¼ 1

m

Xm

i¼1

wi f iðQi; ubi; lbi; . . .Þ (4)

under the conditions for weights wi that guarantee KPI values are
in the range [0, 1]:

Xm

i¼1

wi ¼ m (5)

wi > 0 for all i 2 ½1; m� (6)

The KPI module supports the procedure for fine-tuning
the normalization and aggregation parameters. In this way the
production operator can directly see the influence of the parameters
and adjusts them in such a way as to integrate his/her working
practice.

2.3.2. Influential variable selection module

Variable selection represents an important step for HPC design,
as many potential variables are usually available in production
processes. Furthermore, since aggregated KPIs are connected
with more process variables, it often happens that some a priori
excluded inputs are later found to be significant, and vice versa.

The IVS module is used to rank the impact of various input
parameters on selected performance measures (KPIs). In this way,
only the most relevant manipulative variables are selected, which
simplifies the KPI models, enhances their robustness and reduces
the optimization problem (1). The analysis is based on the
historical production-process data, where several standard and
advanced variable-selection methods are embedded and the result
is given based on the combined analysis.

In the literature, three major principles for variable selection
are used [12], i.e., feature construction, variable ranking and
variable subset selection. Different variable-ranking methods
are contained in the IVS module, such as: (partial) Correlation,
(partial) Mutual Information, Gamma Test, ANOVA, Non-
Negative Garrote, LASSO, etc. For a detailed discussion and an
evaluation of the integrated methods, see Glavan et al. [9]. Note,
that the list of supported methods is not strictly closed, as new
methods can easily be added to the module. The main uniqueness
of the IVS module is the way it represents the final results to the
user. The final result is obtained as a combination of the results of
several IVS methods, where the dispersion of the results
additionally informs the user about the reliability of the given
result for each candidate input.

As we are dealing with dynamical systems, the current values
of the production performance indicators do not depend only on
the current input values, but also on their time-delayed values. The
input-selection problem is therefore augmented by the selection
of lagged inputs and outputs that are used as regressors. The
regression vector for ith KPI is defined as:

fiðtÞ ¼ ½Kiðt � 1Þ . . . Kiðt � naÞ; U1ðt � nkÞ . . . U1

ðt � nb � nk þ 1Þ; . . . ; Unuðt � nkÞ . . . Unuðt � nb � nk þ 1Þ�T
(7)

where na and nb denote the number of past outputs and inputs used
for determining the prediction, nk denotes the time delay for the
input variables and nu indicates the number of different input
variables.

The GUI of a module for influential variable selection is shown
in Fig. 9. This window is used to define the input/output data and



Fig. 9. GUI for determining the most influential manipulative variables.
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other settings for the analysis. After the analysis is finished, we
can observe the results in the window called IVS analysis &

visualization.

2.3.3. Modelling module

Within ProOpter there is also a module that can be used to
define a production model based on historical production data,
for defined KPIs and inputs with the largest influence. It offers a
simplified procedure of black-box modelling and for this reason it
can also be easily used by a production manager who is not usually
an expert in modelling.

The main idea of parametric black-box modelling techniques is
to trim some universal input–output functions, with a fixed
number of parameters, to accurately represent the true process
dynamics, Eq. (8) [20]. The goal is to minimize the mismatch e(t)
between the true process response K(t) and the model prediction
g(.), where the trimming is performed solely on the basis of the
process input–output data pairs ZN ¼ ½UðtÞ; KðtÞ�Nt¼1.

KðtÞ ¼ gðfðtÞ; #Þ þ eðtÞ (8)

ProOpter’s Modelling module makes it possible to use two
different modelling approaches. We can build a model using
neural-network modelling techniques [9], or using a fuzzy
modelling approach [6]. In Fig. 10 we can see the GUI of the
module for modelling with neural networks.

The main idea of the Modelling module is to use the
characteristic production datasets for learning and validating
the identified models. As different parameters need to be tuned to
find a model with good generalization capabilities, the modelling
module identifies several models with alternative parameter
settings. Then, with different validation scenarios and validation
datasets the optimal model is indicated. Model regressors (model
inputs) are automatically selected with the application of the
IVS module results. In this way, dynamic and static models can be
identified, with little or no prior knowledge. If the process
characteristics were to change during the use of the production
model, new process data should be analyzed and a better model
has to be extracted. The cyclical generation and validation of new
models enables a rather conservative adaptation of the model-in-
use to long-term changes in the production. The developed models
are described with PMML schema and are shared in this form with
all the other modules of ProOpter.

2.4. On-line modules

On-line modules give the user the possibility to monitor the
performance of the production process and support him/her with
the decisions on parameter settings in order to control the
production process more efficiently. Actual and previous KPI values
can be examined on-line, where the user can drill-down to any detail
of the production process. The prediction is based on models that are
identified in a previous step using off-line modules.

Advanced decision-support options are available with the use
of two sub-modules. The first one is used for efficiency prediction
while testing different production settings and second one
implements the model-based production control. With the GUI
depicted in Fig. 11 we can use both sub-modules.

2.4.1. KPI prediction module

The KPI prediction module uses KPI models, defined with the
Modelling module, to predict and analyze the KPI dynamics. In this



Fig. 10. GUI for modelling with neural networks.
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way, various production parameter settings (scenarios) can be
simulated and evaluated.

The method used for the long-term prediction of the model
depends on the applied model structure. For model identification
Fig. 11. On-line GUI for efficiency
the non-recursive structures (e.g., FIR, NARX) are usually applied,
as their applications are, in general, more straightforward than the
use of recursive alternatives (e.g., NOE, NBJ, NARMAX) [20]. The
most widely applied non-recursive structure is the NARX model
 prediction and optimization.



Fig. 12. Production control of TE process using ProOpter.

Fig. 13. Aggregated KPIs.
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structure, where the regression vector consists of delayed values of
the input and output variables, as shown in Eq. (7). The NARX
structure is also used in ProOpter. In order to evaluate the long-
term prediction of the identified NARX model, it is necessary to
transform the model to the NOE structure, where the model’s
predicted outputs K̂ðtÞ are fed back to the model input. In this way a
k-step-ahead prediction K̂ðt þ kÞ or simulation response of the
system can be obtained.

2.4.2. Optimization module

ProOpter’s Optimization module offers support for an automatic
determination of the optimized production settings. In order for
this to be possible, a production model is incorporated into the
production control scheme using the model predictive control
(MPC) approach [11,21]. This MPC approach is based on the
repetitive solution of an optimal control problem, taking the
measured system state as the initial state and using the system
model to evaluate the effect of possible system-input sequences. A
discrete time representation of the system dynamics is used and
only the first sample of the calculated optimized input sequence is
applied to the system. In the next sample time the calculation
is repeated with the newly acquired system state. The optimization
is performed over a finite moving horizon, which always starts at
the current sampling instant. In each decision step the optimal
solution of Eq. (1) is calculated using the following cost function:

JðtÞ ¼
XH p

j¼1

kK̂ðt þ jÞ � K�ðt þ jÞk2
Q þ

XHc

j¼1

kDUðt þ j � 1Þk2
Qu

(9)

where DU marks the change of the manipulative variables
(DU(k + j) = U(t + j) � U(t + j � 1)), the operators k�kQ and k�kQu

represent the weighted Euclidean distances with the weights Q

and Qu. Hp and Hc denotes the prediction and control horizons,
respectively.

The user of the Optimization module should define the reference
values of the KPIs to be optimized. With the GUI we can also set the
limits of the manipulative and KPI values and the importance of
every KPI. The calculated manipulative values are suggested to the
user, who can decide to use them or not. The user also has the
possibility to modify the suggested input set and to evaluate a new
control scenario with the use of the efficiency-prediction module.

3. Case studies

The performance of the ProOpter was evaluated through a case
study on the Tennessee Eastman (TE) benchmark simulation process,
where all the steps of a holistic production control are covered.

ProOpter was also validated on two industrial case studies. As
the considered production processes were not fully equipped with
the IT systems, there were problems with data diversity and with
the small amount of data. Despite this, individual modules of
ProOpter were successfully applied.

3.1. Case study on the Tennessee Eastman benchmark simulation

process

The TE benchmark process was introduced in [7] as a simulation
model of a real chemical production process. It consists of five
major units: a chemical reactor, a product condenser, a vapour–
liquid separator, a product stripper and a recycle compressor. The
process products leave the process through an output stream,
where they are separated in a downstream refining section. The
production process has 41 measured variables and 12 different
manipulative variables.

The TE process is a highly unstable system, and is without low-
level process control. We used the system that was stabilized with
the low-level control presented in [19], where nine outputs are
controlled with cascade loops. In order to realize the HPC concept
some changes in low-level control were added, as suggested in
[9]. Therefore, ten input variables are available to manipulate the
TE process.

The case-study simulation environment is depicted in Fig. 12. The
production data of a simulated TE process with low-level control
are archived in a production SQL database. ProOpter fetches these
data with the use of a B2MML connection in order to analyze the
production and to suggest to the production manager how to change
the production settings.

3.1.1. Production modelling

From all the available measurements the production perfor-
mance is monitored through three KPIs: Costs, Production, and
Quality. The definition of the Production KPI is quite straightfor-
ward, as the quantity of product leaving the process is directly
measured. An indicator of the process quality is directly derived
from the main process objectives. The product Quality is viewed
as a desired mass ratio between the two final products, G and H.
For details about the Cost KPI definition, the reader is referred to [7]
or [10]. The KPIs constructed for the TE benchmark are depicted in
Fig. 13.

Next, the influential variable analysis is performed by
considering the available manipulative variables and the defined
KPIs. As we can see from Fig. 14 some of them exhibit greater
influences. Five manipulative variables are selected (Fp, R4, R7, R9,
r2). A detailed analysis is given by Glavan et al. [9].

Based on the selected input/output variables a neural-network-
based model is then identified with the use of ProOpter’s modelling
module. As is clear from Fig. 15, the resulting neural network gives
a satisfactory response to the validation data.

3.1.2. On-line production-efficiency monitoring and optimization

An example of the on-line production-efficiency monitoring and
optimization is illustrated in Fig. 16. On the left-hand side of
the graph (the line with open circles) we can see the history of the
observed KPI variables, where an intermediate vertical line indicates
the current time. In this way, a production manager can monitor
the current and previous production efficiency in real-time. With a
detailed investigation of the variables that contribute to the
performance measure as well, an insight into the manipulative
values is possible by choosing the drill-down option.



Fig. 14. Selection of influential variables for Costs (upper left), Production (upper right) and Quality (lower).
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In order to define the future control scenario, the production
manager also has the option to employ the KPI models, using
the KPI prediction module. Fig. 16 shows a case where the
production manager has tested a new control scenario. Based
on his/her experiences gained from previous work on an
optimization process he/she has manually defined the future
Fig. 15. Model validation o
manipulative variable values in order to move the process to a
new operating mode (increased Quality level and maintain
Production level). With the manual testing of different scenarios
and observing the behaviour of the predicted KPI values, he/
she has determined the scenario depicted with the line and
triangular dots.
n the testing dataset.



Fig. 16. Efficiency optimization.

Fig. 17. Aggregated KPIs.

D. Gradišar et al. / Computers in Industry 70 (2015) 102–115112
The user also has an option to use the Optimization module,
where the optimized adjustment of the manipulative values is
calculated on-line using a model-based predictive control
technique. The identified performance model is used to deter-
mine more appropriate manipulative variable settings, while
the user has to specify the appropriate KPI targets (reference
values). In the presented case the user has specified the control
objectives and their priorities (i.e., change of Quality level and
Costs minimization objective, while retaining the same Production

ratio). The line with square dots in Fig. 16 indicates the simulated
outcome of this automatically determined control scenario and
the solid horizontal lines indicate the KPI’s reference values. From
these results it can be seen that a higher-quality percentage
measure yields lower cost values. This might be rather confusing,
but note that the quality indicator cannot be interpreted in a
traditional sense, as it is defined as a percentage ratio of the two
products leaving the process [19].

After the examination of different control scenarios the
production manager has to approve and implement the final
settings of the manipulative variables.

3.2. Validation on industrial case studies

Parts of ProOpter were also tested in industrial case studies.
Two applications are given in the next subsections.

3.2.1. Case study of batch production

The first industrial case study considers the problem of
performance measurement metrics determination and an influ-
ential variable analysis in the production of water-based paints
and coatings. The production is a typical batch process consisting
of a dosing-and-mixing stage, a milling stage, a production stage,
and a packing stage. In between the production and packing
stages the quality control is performed, where the acceptability of
a product for packing is determined. In the case of a negative
result, the product can be scrapped, or can go to re-work where
the quality is improved. The study was based on actual production
data, and therefore ProOpter had to be connected to the existing
IT systems.

The performance monitoring in the considered batch
production is mainly oriented towards a determination of
suitable batch parameter settings. Therefore, batch-related
indicators were of primary concern. In cooperation with the
production managerial staff the following relevant indicators
were identified and formalized with ProOpter’s KPI definition

module (Fig. 17):
- Product Quality – calculated per batch as a result of a laboratory
analysis. Different products have different measured parameter
sets.

- Raw materials consumption ratio – ratio of the actual raw-material
consumption per work order to the normative consumption.

- Timeliness – difference between the actual finish time and the
planned finish time.

- Scrap rate – ratio of the actual scrap quantity to the planned
produced quantity.

Product Quality is the most complex indicator. As the measured
parameter sets differ among different products they have to be
normalized and aggregated to derive indicator values that are
comparable among several batches. For every product (or product
family) the relevant set of laboratory-measured quality parame-
ters is identified, and these are normalized and aggregated into a
standard valued quality indicator.

The quality indicator is also the most relevant for the
production efficiency. Poor-quality products go either to re-work,
which decreases productivity, or go to scrap, which is a direct
cost. The analysis of influential production variables that
determine the quality level is therefore the most important.
Unfortunately, the analysis cannot be generalized, but has to be
performed for every product family due to various production
recipes. An analysis was performed using ProOpter’s IVS

module. The results of the analysis for one of the product families
are shown in Fig. 18. The aggregated results of a subset of available
variable selection methods are shown as a box plot. In the given
case, the maximum RPM of the mixer dominates the batch quality,



Fig. 18. Selection of Quality indicator influential variables for a product family.

Fig. 19. Selection of influential parameters for final product Quality.
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and interestingly also the temperature in the production hall
appears to be important as well.

Fig. 18 indicates another specific feature of the given production
case. Variable selection methods require that measurements on a
batch have to be aggregated into a single data point, when
considering their influence on the batch quality. For this purpose
data-aggregation functions, provided within the ProOpter Data

module, are used.
Fig. 20. Validation
3.2.2. Case study of discrete production

The second industrial case study considers a moulding process.
The process consists of two main phases: moulding and product
finalization. With moulding the intermediate product is created
and in product finalization the bearing set is mounted into the
product. The product quality was estimated using a measure that
was used previously in production, i.e., the Quality indicator was
defined as a force used for mounting the bearing set (Q).

During the moulding phase we can observe a number of
different process parameters that describe the internal process
state. The observed parameters are defined as characteristic
features of the main process variables (e.g., temperatures,
pressures, cycle times). With ProOpter’s IVS tool we analyzed
the historical process data and ranked the influence of the
observed parameters. As can be seen in Fig. 19, the influences of the
two process parameters (x8 and x6) were found to have a major
influence on the final product Quality.

On the basis of historical process data two separate
models were identified. The first model describes the relation
between the product Quality and the most influential process
parameters. The second model is identified in order to describe
the relation among the process parameters and the manipula-
tive variables.

The identified models were validated directly on the produc-
tion process. First, various alternative production process
settings were calculated with the use of the models. The
calculated settings were then applied to the production process.
The final test results are shown in Fig. 20, where it can be seen
that the simplified model of the final product quality resulted in a
robust model. Such a model can support the tuning phase of
 of the model.
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the production process and enables a better understanding of
the process.

4. Conclusion

The solutions used so far to control and optimize production
are not capable of solving all existing the problems, so some new
initiatives (Industry 4.0, Smart manufacturing) addressing this
issue have emerged recently. With the advanced platform for
production analysis and optimization – ProOpter, presented in
this paper, we are following the ideas of these emerging
initiatives, concentrating on one of the sub-problems. Namely,
ProOpter offers a solution that can upgrade the existing
production IT systems using data-analysis and system-modelling
techniques. As such, it helps the production manager to analyze
and optimize the production process. The ProOpter platform
supports the concept of previously introduced holistic produc-
tion control, where simplified KPI models that are identified from
historical data are used as a decision-support tool. The use of the
platform can unburden the production manager and help him/
her take better decisions in order to improve the production
process. With the introduction of the ProOpter platform we
can expect savings in various areas of production, with better
product quality, efficiency increases, waste reduction, and
production cost reduction.

The tool is designed in such a way that enables a connection to
the existing production IT systems over the standardized
communication channels. Thus it extends their functionality with
additional decision-support intelligence. The platform is modular-
ly built using the established industrial standards in order to
integrate all the modules.

One of the main advantages of ProOpter is that it enables
experimentations with various newly developed methods and
algorithms in a real production environment with no influence on
the production process.

The platform was successfully validated on a simulated TE
production process and partially validated on two industrial
applications. The validation showed that such an approach could
be useful for the production manager. Industrial case studies
pointed out that the current production IT limitations could limit
the applicability of such a tool. Nevertheless, it was shown that
even a simple analysis of everyday data can open new
opportunities for enhanced process understanding and process
optimization.

As part of the further work, the platform needs to be upgraded
to be fully applicable to all kinds of production processes (e.g.,
batch, continuous, discrete). For this reasons some additional
validation case studies have to be performed on industrial
processes. From practical experiences, which we gained from case
studies, we can see that an additional simplification and
automation of the modules is needed. To handle large databases,
additional, efficient IT routines should be utilized for finding the
valuable data portions.

We can conclude that the experience with ProOpter and the
underlying concept of holistic control obtained so far is positive.
This fact additionally explains why the idea of decision-support
systems based on black-box models has recently gained a lot of
attention. However, we have to be aware of the limitations and
possible problems. On one hand, such systems, with a combination
of the user’s process knowledge, are capable of extracting hidden
knowledge from the vast amount of process data. But, on the other
hand, they are prone to extrapolate the knowledge included in data
outside of the valid limits. Here, ProOpter is no exception. The
future development of ProOpter should also focus on an increased
awareness of the model’s extrapolation limits when future control
suggestions are being calculated/offered.
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